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ABSTRACT
Touchscreens are the dominant input mechanism for a variety
of devices. One of the main limitations of touchscreens is the
latency to receive input, refresh, and respond. This latency
is easily perceivable and reduces users’ performance. Previ-
ous work proposed to reduce latency by extrapolating finger
movements to identify future movements - albeit with limited
success. In this paper, we propose PredicTouch, a system that
improves this extrapolation using inertial measurement units
(IMUs). We combine IMU data with users’ touch trajectories
to train a multi-layer feedforward neural network that predicts
future trajectories. We found that this hybrid approach (soft-
ware: prediction, and hardware: IMU) can significantly reduce
the prediction error, reducing latency effects. We show that
using a wrist-worn IMU increases the throughput by 15% for
finger input and 17% for a stylus.
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INTRODUCTION
Touchscreens are the primary input mechanism for a wide
range of devices, including smartphones, tablets, car entertai-
nment systems and ATMs. As all other input mechanisms,
touchscreens have certain latency. As they combine input and
output, touchscreens’ latency is more visually apparent than
the latency of other mechanisms, such as mouse or keyboard.
When drawing a line or when dragging an object across the
screen, even a small amount of touchscreen latency (below
10ms) is easy to perceive [30]. As shown Figure 1, latency
results in a clearly visible gap between the finger or stylus held
by the user and the corresponding response, such as a line or a
following object. The higher the latency the larger the gap.

Touchscreens are built using several components and layers,
each potentially responsible for introducing latency. When a
user touches the screen, the registered input is passed through
a pipeline of different processing components before visual
feedback can be visualized on the screen. This results in
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Figure 1. Sketch of PredicTouch. Point (A) shows the touch position
registered by touchscreens due to latency. Point (B) shows the actual
position of finger/stylus. Point (C) shows the touch position extrapolated
by PredicTouch to reduce the visible latency of touchscreens.

unavoidable lag in the range of 50ms to 200ms [5, 18, 32]
which is clearly visible and decrease users’ performance [16].

Previous work proposed different approaches to reduce tou-
chscreen latency. On the one side, hardware-based approaches
use additional hardware such as high-speed cameras [32, 22]
and motion capture systems [3] combined with high-speed
projectors to visualize users’ fingers with a latency down to
1ms. While these approaches work reliably, they require im-
mobile external sensors that are only suitable for stationary
setups but not mobile devices. On the other side, software-
based approaches extrapolate the finger’s movement [3, 11] to
reduce the visual gap between finger and dragged object. The
recent state-of-the-art approach from Henze et al. [11] uses
artificial neural networks to predict the finger’s future position
based on the latest trajectory of the finger. Since software-
based approaches do not rely on external sensors, they can be
readily integrated into off-the-shelf mobile devices, such as
commercial smartphones and tablets. However, these appro-
aches induce a high amount of jitter due to prediction errors
which can even decrease users’ throughput (i.e. speed and
accuracy). These limitations make both approaches unsuitable
for latency reduction on off-the-shelf mobile devices.

In this paper, we present a hybrid approach that improves
the software-based approach by Henze et al. [11] through
additional sensors to capture the hand’s micro-movements. As
previous work already demonstrated the capability of IMU
sensors to reconstruct hand and stylus movement in a wide
range of use cases [14, 38, 10], we show that incorporating
IMU data into a machine learning model that predicts the
finger’s future position significantly reduces the prediction
error. Through a user study, we further show that the IMU
data also helps to significantly increase users’ throughput. As
a wide range of commercially available technologies includes
IMUs, such as smartwatches, smart pens or even smart clothes,
we conclude that this low-cost approach can reduce latencies
of ever-increasing touchscreen devices around us.
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RELATED WORK
Prior work investigated the effect of latency on the user and
proposed different latency reduction approaches. IMUs were
used to reconstruct motion trajectories for several use cases.

Effect and Perception of Touch Latency
Prior work showed that latency negatively affects the user
experience [17]. A body of work developed approaches to
measure the latency of touchscreen devices [2, 5, 18] and sho-
wed that the latency of commercial touchscreen devices ranges
from 50ms to 200ms [5, 13, 18, 32]. This is easily perceivable
for humans. While Ritter et al. [34] showed that users conside-
red latencies above 170ms as unacceptable for dragging tasks,
Deber et al. [6] reported that the threshold for noticing latency
when dragging an object across the touchscreen is 11ms. Ng
et al. [30] further showed that users are able to distinguish
between latency differences of 1ms. Investigating the effect
of latency on the user while using a stylus to draw, Annett et
al. [1] found that even very low levels of latency down to 2ms
can be discriminated by the user.

Besides the perception of latency, researchers also investigate
the effect of latency on the user’s performance. Jota et al. [16]
showed that latency of 25ms already significantly decreases
the user’s performance measured by the throughput [26] in a
Fitts’ Law dragging task. Kaaresoja et al. [19] investigated
different delays when entering sequences of numbers on a
touchscreen, and found that keypads with a constant delay
and the smallest feedback delay variation were faster to use
and produced fewer errors in comparison to a wider delay
variability. Further, users perceive buttons with longer delays
as heavier, with a need for greater force when pressing [19].

Previous work repeatedly showed that even very small
amounts of touchscreen latency are noticeable and reduces
users’ performance. In summary, touchscreen latency clearly
has a negative effect on the user experience.

Reducing Touch Latency
As even a very low amount of latency is easily noticeable
and affects the user’s performance, researchers proposed dif-
ferent approaches to reduce latency. Previous approaches can
be categorized into hardware-based and software-based ap-
proaches. Hardware-based approaches consist of additional
hardware that captures the user’s finger faster than capacitive
touchscreens. For example, Ng et al. [31, 32] combined a
high-speed camera to capture the user’s hand with a high-
speed projector to build a touchscreen with a latency of 1ms.
Similarly, Cattan et al. [3] used an optical marker tracking
system to build a touch screen with 25ms latency. Based on a
projected capacitive architecture, Leigh et al. [25] developed
a multi-touch sensor with a frame rate of 4000Hz and latency
of 40 microseconds. The sensor, however, is not transparent,
bulky and consumes nine watts even without the high-speed
projector. While these approaches resulted in low latencies,
they are only suitable for stationary setups.

In contrast, software-based approaches use the measurements
provided by the touchscreen and can be readily deployed into
off-the-shelf touchscreen devices. Cattan et al. [3] reduced

touchscreen latency by linearly extrapolating the finger mo-
vement. They showed that a large part of the latency’s negative
effect can be compensated when running their approach on
a 25ms latency system. However, using the prediction with
latencies above 42ms did not yield better performance. Si-
milarly, Henze et al. [11] predict the finger movement on
commercially available mobile devices with a high latency of
100ms. They show that shallow neural networks can better
predict a finger movement than linear interpolation. While
the authors improved throughput by predicting the finger’s
position in 33ms, the approach results in a high prediction
error. This error induces a high amount of jitter which causes
negative reactions and even reduces throughput when pre-
dicting a finger’s position in 66ms. We propose to reduce
the predicting error with information about the user’s hand
movement captured by IMUs.

Using IMUs to Capture Micro-Movements
IMUs are widely available in a large number of commercial
devices, including smartphones, smart watches, tablets, and
even styli. Previous research used IMUs to reconstruct a hand
model with eight IMUs placed on the hand [14]. Amongst
others, IMUs capture the micro-movements of the objects in
which they are integrated through acceleration and orientation.
Researchers used this information for a wide range of use cases.
For example, Wang et al. [38] and Hsu et al. [15] used an IMU
integrated into a stylus to reconstruct its motion trajectory
and for hand-written digit recognition. Similarly, Deselaers
et al. [7] used the IMU integrated into smartphones to enable
users to use their smartphones as a pen. When attached to the
user’s wrist, IMUs can be used for gesture recognition [23,
4], activity recognition [28] or to extend the input space on
commodity touchscreens [39]. Using accelerometers on the
wrists and hips, He et al. [10] showed that it is also possible
to predict human movements.

DESIGN OF PREDICTOUCH
To reduce the error when reducing touchscreen latency by pre-
dicting the finger movement [11], we use inertial measurement
units (IMUs) to feed the model with additional information
about the user’s hand or stylus movements. We refer to these
movements as micro-movements in the following. PredicTouch
includes three IMUs to record micro-movements in three lo-
cations separately. This enables us to train models and to test
different IMU locations as well as their combination for both
finger input and stylus input. We analyze the most effective
IMU location(s) and their practicality with an integration into
common mobile devices (e.g. smartwatches or styli) in mind.

System
PredicTouch consists of three IMUs (MPU-92501) connected
via cable to an Arduino Micro. The Arduino retrieves the
sensor values and forwards these to a Google Nexus 7 tablet.
To capture the hand’s micro-movements, we placed two IMUs
on the user’s hand – IMUwrist on the wrist of the hand used
for interaction and IMUfinger on the second segment of the
index finger between the distal interphalangeal joint (DIP)

1http://www.datasheetspdf.com/datasheet/MPU-9250.html
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Figure 2. System overview: IMUs at a stylus, the index finger, and the
hand wrist are connected to an Arduino board located at the upper arm.

and the proximal interphalangeal joint (PIP). We delibera-
tely chose these locations as this makes it easier to integrate
PredicTouch into off-the-shelf mobile devices such as smart-
watches or smartrings2. Both IMUs are sewn onto a unisize
glove and further fastened with adhesive tape which ensures
a firm attachment onto the user’s hand to avoid noise in the
recordings. To also capture a stylus’ micro-movements, we
attached a IMUstylus on the upper side of a passive capacitive
stylus (Wacom Bamboo Stylus Solo, 9mm tip). PredicTouch
used by a participant is depicted in Figure 2.

Each IMU has 9 degrees of freedom, with three axes each for
an accelerometer, gyroscope, and a magnetometer. The accele-
rometer samples with a frequency of 4kHz, gyroscope with a
frequency of 1kHz and the magnetometer with a frequency of
100Hz. To minimize the sensor reading time and the time to
transfer the sensor values to the tablet, we used the serial perip-
heral interface (SPI) on an Arduino Micro to access all three
IMU sensors at once. Further, we send all 3×9 sensor values
to the tablet via a serial connection using a USB OTG cable.
We used the open-source Android USB serial driver library3 to
receive the sensor values in our Android application. Reading
the sensor values takes 0.84ms on average while the average
round trip time (reading and sending the sensor values to the
tablet and awaiting the ACK) is 1.66ms (SD = 0.79ms). The
touch prediction uses a neural network running on the Google
Nexus 7 which has a 7.02 inch screen size with a resolution of
1920×1200 px and a sampling rate of 60Hz.

Data Collection
To train artificial neural networks for predicting future touch
positions, we designed three task types to collect represen-
tative touch input and the respective micro-movements per-
formed by finger and stylus, based on previous work [11].
Participants performed these tasks wearing PredicTouch so
that we recorded both the micro-movements and the input on
the touchscreen.

Study Design & Tasks
The study implements a 3 × 2 within-subjects design with
the independent variables task type (drawing, writing, and

2http://nfcring.com/
3https://github.com/mik3y/usb-serial-for-android

dragging) and the input method (finger and stylus). Using a
balanced Latin square, we instructed participants to perform
these tasks in a counterbalanced order. The tasks are depicted
in Figure 3 and include: A drawing task, in which we in-
structed participants to draw a picture of their last vacation
– we encouraged them to finish in less than ten minutes and
proposed to draw a tropical island in case they did not come up
with an own idea; a writing task, in which participants wrote
phrases randomly selected from the phrase set by MacKenzie
et al. [27] 10 minutes; and a Fitts’ Law based dragging task
that replicates the design by Jota et al. [16], which requires
participants to drag a smaller square into a larger one. For
this, we used three sizes for the smaller target (24mm, 32mm,
40mm) and three distances (28mm, 68mm, 120mm), resulting
in nine combinations. These combinations were repeated eight
times resulting in 72 instances. The study took about 60 minu-
tes including breaks between each task. Participants wore the
glove sitting in front of a table with the Nexus 7 tablet.

Participants
This study was conducted in a lab, at a technical university
located in central Europe. We recruited 18 participants (9
female) from the university’s campus. Participants were on
average 26.8 years old (SD = 11.6) and were all right-handed
with an average hand size of 17.5cm (SD = 1.2cm). No parti-
cipant had any motor weakness or disease. All participants had
prior experience using touchscreens for browsing or chatting.
Further, six participants had prior experience with touch stylus.
Participants were reimbursed for their participation with 10e.

Data Set
We collected 503,647 touch samples performed with the fin-
ger, and 500,020 touch samples with the stylus from the tou-
chscreen. A touch sample consists of the timestamp, and
the (x,y) position of the touch. Due to variances in the tou-
chscreen’s sampling rate (expected frequency is 60Hz), we
filtered out all the inadvertent touch samples with a tempo-
ral gap of more than 30ms (33Hz). Thus, 2.2% of the touch
samples made with the finger and 1.3% made with the stylus
were removed. After removing, the average frame rates are
17.0ms (SD=2.1ms) and 17.0ms (SD=2.0ms) for finger and
stylus. For the IMUs, we collected 14,216,904 IMU samples
while participants used their finger to perform input on the
touchscreen and 14,119,369 while using the stylus. These
samples consist of a timestamp and three (x,y,z) triples for the
accelerometer, gyroscope, and magnetometer each. We used
a nearest-neighbor approach to match the IMU sensor values
with their respective touch samples based on their timestamps.

Training Artificial Neural Networks
Predicting the user’s finger or stylus position in the near future
is done by an artificial neural network which we trained using
TensorFlow. To test and compare different IMU positions and
combinations, we trained 4×2 neural networks whereas each
uses the touch trajectory and a specific IMU configuration. For
input using the finger, we tested all feasible combination of
the IMU: touch trajectory only, IMUfinger, IMUwrist and both
IMUfinger + IMUwrist. For stylus input, besides training on
touch trajectory only, the IMU configurations are IMUstylus,
and its combination with IMUfinger and IMUwrist. IMUstylus
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(a) (b) (c)
Figure 3. (a) Examples of the pictures painted by the participants, (b) screenshots of the written text, and (c) photos of the Fitts’ dragging task.

could not be omitted in any configuration as it is required to
capture the micro-movements of the stylus.

For each point in time t, the neural networks use the touch tra-
jectory consisting of a position and rotation invariant version
of the previous 10 touch samples, and the 10 latest micro-
movements of the hand measured by the IMUs at a time t
based on the highest frequency of the three IMU sensors (acce-
lerometer, 4kHz). To compare different neural networks with
each other, we used the Euclidean distance between the actual
and the predicted point as the comparison metric. Results are
shown in Figure 4.

Constructing the Input Vector
Each time an input vector is constructed, we take the 11 latest
touch samples in time t−10 to t and their respective (x,y,z)
triples for the accelerometer, gyroscope, and magnetometer
each. Afterwards, the touch samples that represent a touch
trajectory are made position and rotation invariant similar to
Henze et al. [11]. Position invariance was yielded by calcula-
ting the difference for x and y between the 11 touch samples,
resulting in 10 tuples representing directional vectors in x and
y direction. The same process was performed on the values of
the accelerometer, gyroscope, and magnetometer of the IMU
samples. In a second step, we took the 10 vectors from the
previous step and made them rotation invariant. This was done
by rotating the 10 directional vectors counterclockwise so that
the one farthest back in time is aligned with the y-axis. Thus,
directional changes in the trajectory are observed from a fixed
angle which makes them rotation invariant.

The input vector for the neural network consists of the 10
directional vectors that are position and rotation invariant.
Additionally, for each IMU we added the 10 latest (x,y,z)
triples of the accelerometer and gyroscope starting from time
t. This gives the neural network information about the recent
micro-movements of the hand or stylus. This results in 20
input values from the touchscreen, plus 60 further input values
for each IMU that is used.

Neural Network Architecture
We trained a multi-layer feedforward neural network [36] for
regression to predict where the user’s finger or stylus will be
in the near future. We tested different network configurations
including variations of the amount of neurons and layers, acti-
vation functions, and optimizers provided by TensorFlow. The
final network consists of an input layer with 20 neurons plus
further 60 for each IMU used and is connected to three hidden
layers comprising 500, 400 and 300 neurons. The output layer

consists of 12 neurons whereas each pair represent the (x,y)
position of a future touch in the subsequent time t ∈ T with
T = {16ms, 33ms, 49ms, 66ms, 72ms, 99ms}.
We used the adaptive gradient algorithm (AdaGrad [8]) as
the optimizer and two rectified linear units (ReLU [29]) and
one sigmoid as activation functions. To initialize the network
weights and biases, we used the Xavier initialization scheme
as proposed by Glorot et al. [9]. The cost function for opti-
mization is the Euclidean distance between the points of the
predicted trajectory p and the points of the actual trajectory a
over all six subsequent time points t as shown in Equation (1).

cost =

√
∑

T
t (pt −at)2

|T |
(1)

The neural network was trained until the cost function conver-
ges with a threshold of ≤ .001. This was the case after 660.5
epochs on average (SD = 86.7).

Model Validation and Comparison
For each trained neural network, we implemented a leave-
one-out cross-validation [20] over all 18 participants. With
this, we evaluated the model’s performance in the form of the
Euclidean distance in px between the predicted point and the
actual point. For all tasks and prediction times T , the neural
networks that involve at least one IMU sensor yield a lower
average Euclidean distance than their counterparts that use
only the touch trajectory. For both finger input and stylus input,
two three-way ANOVAs and Bonferroni-corrected pairwise
comparisons revealed significant differences between all afore-
mentioned conditions and interactions (with p < .001), except
between the usage of IMUwrist and IMUwrist + IMUstylus when
using the stylus (p < .966). To compare our results with the
trajectory-only approach by Henze et al. [11], we report the re-
sults of three prediction levels (33ms, 66ms and 99ms) which
equals to predicting 2, 4, and 6 touch samples into the future
when assuming a constant sample rate of 60Hz. Figure 4
shows the Euclidean distances in px for all tasks, different
IMU configurations and the three prediction times.

To report the Euclidean distance for all three prediction levels,
we use a square bracket notation, starting with the 33ms level
(i.e. [33 66 99]ms). For input with the stylus, the neural
network that uses the touch input and IMUstylus samples leads
to the lowest Euclidean distance of all IMU configurations.
This neural network achieved an average Euclidean distances
of [9.9 20.9 37.1] px (SD = [15.7 30.4 41.1] px). For finger
input, the model using both IMUwrist and IMUfinger with the
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Figure 4. Euclidean distances (px) between the predicted and actual touch position for a 33 ms, 66 ms, and 99 ms prediction for finger and stylus input.
10 px equals to 0.79 mm and 10 mm equals to 127.20 px. Error bars show the 75% quantiles, boxes the 50% quantiles, the black line depicts the median.

touch input leads to the lowest distance of [9.4 20.6 34.0] px
(SD = [14.9 28.5 48.9] px). When using only IMUwrist and
touch for finger input, we achieved a distance of [10.0 22.0
35.9] px (SD = [15.1 28.9 44.4] px).

Additionally, we tested a combination of all three IMUs for
stylus usage. This leads to a distance of [10.0 21.8 34.8] px
(SD = [16.0 31.0 46.8] px) which is higher than using only
IMUstylus. We also tested using the magnetometer values of
the IMU sensors and found they lead to higher distances than
without. As an example, using magnetometer values with
IMUwrist and IMUfinger for finger input leads to distances of
[10.0 23.0 38.2] px (SD = [15.1 29.4 45.0] px).

Discussion
We trained artificial neural networks for different combinations
of IMUwrist, IMUfinger, IMUstylus as well as touch trajectory
only and compared them with each other using leave-one-out
cross-validation. We showed that the error rate is signifi-
cantly lower when involving IMUs in the prediction compared
to using touch only. For finger input, using IMUwrist and
IMUfinger together with the touch trajectory on the display
leads to the lowest error – closely followed by using only the
IMUwrist and the touch trajectory. When using a stylus, touch
trajectory and IMUstylus leads to an error that is significantly
lower than other combinations for stylus input. We found
that using magnetometer data lead to a higher prediction error.
Since magnetometers are prone to interference through nearby
ferromagnetic objects and electro-magnetic fields, they overfit
the model and result in a lower prediction performance.

An IMUwrist and IMUstylus could be readily deployed into off-
the-shelf products such as smartwatches and an IMU built into
a stylus (e.g. NoteOn Smartpen4). To fully utilize the IMUs’
4https://hackaday.io/project/2678-noteon-smartpen

sampling rate, we decided to use cables to connect the sensors
and a serial connection to transfer the data to the tablet. The
API of recent smartwatches limit the sampling rate of their
IMUs to around 100Hz which is sufficient for their main use
cases. However, Laput et al. [23] have shown that it is possible
to capture an LG G W100 smartwatch’s accelerometer data
at 4kHz through OS kernel modifications. This would be
a possible solution to integrate PredicTouch into the mobile
devices that users already carry with them. IMUfinger recently
provides a challenge as this requires the user to wear a special
ring to entail an IMU.

We conducted a lab study to collect a data set in a controlled
setting leveraging the full technical capabilities of our system.
In contrast, Henze et al. [11] developed an application which
was freely available in the Google Play Store to collect a
large data set. When comparing their prediction results for
writing with our results when using only the touch trajectory,
we found that our prediction error is higher. This could be
due to participants performing touch input differently which
makes it challenging to compare results across studies. When
using our collected data, a comparison of the approach by
Henze et al. [11] and our hybrid approach revealed that using
IMUs always lead to a lower prediction error than using only
the trajectory across all tasks.

To summarize, our work compares well with the closest
software-only prediction models for painting tasks, is worse
for a writing task, but excels at dragging tasks. Since Predic-
Touch works best for dragging and painting tasks, we focus
on reducing latency for dragging and painting tasks in the
remaining work. As the model for finger input, we use only
IMUwrist (which had the second lowest error rate after IMUwrist
+ IMUfinger) with the touch trajectory as there is recently no
smartring with an open API to use IMUfinger to implement
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Figure 5. Image of 66 ms touch-only prediction in the painting task. The
prediction is exemplarily highlighted by the red line.

PredicTouch in commercial hardware. Further, using IMUwrist
+ IMUfinger requires users to carry both devices and would not
work if one is missing. For stylus input, we simply used the
IMUstylus configuration as this lead to the lowest error rate in
the model validation.

COMPARING PREDICTION EFFECTS
While we showed that IMUs can significantly reduce the ob-
jective error, the results do not show how this affects the users’
performance. Thus, we conducted a study to evaluate the
effects on the user.

Study Design
To be in line with Henze et al. [11], we used the same levels
of prediction to reduce latency: 0 ms (baseline), 33 ms, and
66 ms. As previously mentioned, the average error (for stylus
and finger) was up to 37.1 px (SD = 41.1) using the 99 ms
prediction. Thus, the resulting jitter of this prediction level
would be impractical and unreasonable high to be tested in
a user study. The three prediction levels were tested with an
IMU (or not) per device (finger touch input with IMUwrist, and
stylus with IMUstylus), which lead to 12 tasks per participant.
Since an IMU could only be tested at the 33 ms and 66 ms
prediction levels, the factor prediction is nested into the factor
IMU. Nested designs are proposed by Krzywinski et al. [21]
to understand the variability in the hierarchy of subsamples.
In our case, they prevent cross comparisons between the IMU
and the three prediction levels as well as cross comparisons
between the prediction levels and the devices. However, they
allow to include the usage of IMUs with the 0 ms prediction
condition using the finger as well as the stylus. Thus, our
experimental design finally results in 10 different conditions.

In line with Henze et al. [11], we used a Fitts’ Law dragging
task and a painting task. As in the data collection study, the
Fitts’ Law dragging task includes three target sizes, three
distances, and eight repetitions, which results in 72 tasks per
condition. The order of the tasks was randomized. Target sizes
and distances were the same as in the data collection study. We
measured errors and task completion time (TCT) to determine
the throughput of each participant. The higher the throughput,
the more accurate and faster users can perform input. In the
painting task, participants were asked to draw a picture from
their last holidays. Participants that did not come up with an
idea were asked to paint a picture of tropical islands. We used a
7-point Likert items to ask participants for the perceived jitter,
lag and unpleasantness after each condition (7 indicates a high
perception). Conditions and tasks were pseudo-randomized
using a pre-defined block plan to avoid sequence effects.

Figure 6. Participant using PredicTouch and conducting a Fitts’ task
with the finger (left) and a painting task with the stylus (right).

Apparatus
Using TensorFlow Mobile5, we integrated the neural networks
into the system used in the data collection study (see Figure 6).
The model that only used the touch trajectory as input require
on average 2.565ms (SD = 0.859 with N = 1,000 samples) to
execute. Models that used touch trajectory and IMUs require
on average 3.935ms (SD = 0.944 with N = 1,000 samples) to
execute. In the Fitts’ Task, predicted positions were directly
applied to the square while in the painting task, the prediction
is visualized by appending an additional line segment at the tip
of the regular line (Figure 5 shows the exemplary additional
line segment in red. While the appended line segment reduces
the gap between the user’s moving finger and the line, only the
touch positions provided by Android were kept on the canvas.

Participants and Procedure
We recruited 16 right-handed participants (8 male, 8 female)
from our university with a mean age of 28.8 years (SD =
11.9). No the participants suffered from motor weakness or
disease, eight participants already took part in the first study.
Participants wore the glove sitting in front of a table with the
Nexus 7 tablet. Every participant received a compensation
of 10e . All participants reportedly use touchscreens daily.
Styli were used daily by 1 participant, 11 used a stylus weekly,
3 daily, 1 monthy, and 1 participant mentioned never to use a
stylus.

After signing a consent form, the participants were briefed
about the experimental procedure. After completing a task,
participants were asked to rate the perceived jitter, lag, and un-
pleasantness of their input. We collected qualitative feedback
to understand whether and how people perceive lag on their
device and for which purposes they would like to reduce lag.
The following three questions were asked in a semi-structured
interview: (1) Have you ever felt latencies on one of your
touch devices during touch movements? (1.a) If so, has that
disturbed you? (2) Can you imagine touch tasks with a smaller
latency? (2.a) If so, what would be the benefits for you? (2.b)
Which tasks could benefit from using such a system?

RESULTS
We analyzed the effects of the independent variables DEVICE
(finger, stylus), IMU (yes, no), and PREDICTION (0ms, 33ms,
66ms) on the average throughput per participant, the task
completion time (TCT), the error rate, as well as the subjective
ratings. We used Bonferroni-corrected t-tests for pairwise
comparisons when post-hoc tests were conducted.
5https://www.tensorflow.org/mobile/
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throughput (bit/s) TCT (ms) error (%)

device IMU prediction M SD M SD M SD

finger touch only 0 ms 2.643 1.046 678 207 2.5 2.1
33 ms 2.788 1.052 635 196 2.3 3.0
66 ms 2.821 1.338 662 260 5.1 5.0

touch + IMU 33 ms 2.889 1.240 636 219 1.6 1.6
66 ms 3.051 1.397 611 225 2.4 2.7

stylus touch only 0 ms 2.452 0.939 721 197 3.0 2.2
33 ms 2.719 1.033 654 208 2.0 3.0
66 ms 2.800 1.184 644 218 4.2 4.0

touch + IMU 33 ms 2.781 1.088 647 215 2.3 2.5
66 ms 2.870 1.114 615 200 2.8 1.7

Table 1. Average throughput (bit/s), task completion time (TCT in ms),
and error rate (in %) of the participants during the Fitts’ task.

Throughput
The results of the Fitts’ throughput measures are depicted in
Figure 7. Outliers in the raw data were filtered through keeping
the data within the 1% and 99% quantiles. Only completed
tasks were included in the analysis of the throughput. The
throughput was calculated with respect to target size and target
distance as suggested by MacKenzie [26]. The results of the
Fitts’ task are summarized in Table 1.

We conducted a three-way repeated measures (RM) ANOVA
and found a significant effect of IMU [F(1,15) = 6.329, p =
.023] and a significant effect between the levels of PRE-
DICTION [F(2,90) = 2.233, p = .047] on the average throug-
hput. Considering the stylus condition with IMU, pairwise
comparisons revealed significant differences between the 0ms
and 66ms (p = .012) as well as between the 33ms and 66ms
(p = .050). Considering no IMU and the stylus conditions
pairwise comparisons between the prediction levels showed a
significance difference between 0ms and 66ms (p = .014).

Using an IMU in the finger condition, pairwise comparisons
between the prediction levels showed a significance difference
between 0ms and 33ms (p = .022) and between 0ms and
66ms (p = .017). Using no IMU in the finger condition, pair-
wise comparisons between the prediction levels showed a sig-
nificance difference between 0ms and 33ms (p= .015) and be-
tween 33ms and 66ms (p = .022). No significant effects were
found between both DEVICES [F(1,15) = 1.485, p = .242].
Since prediction time is a nested factor of the IMU condition,
interactions could only be compared between the levels of
DEVICE× IMU [F(1,15) = 1.518, p = .237], which was not
significant. The results of the average throughput per partici-
pant are depicted in Figure 7.

TCT and Error Rate
We found significant effects of IMU [F(1,15) = 12.24, p =
.003] and PREDICTION [F(2,90) = 9.411, p < .001] on the
average TCT of the participants. A significant effect was
found for DEVICE [F(1,15) = 1.018, p = .329], however,
there was no interaction effect of DEVICE× IMU [F(1,15) =
.573, p = .461]. Pairwise comparisons showed the same of le-
vels of significant results as the previously reported throughput.
There were neither a significant effects of IMU [F(1,15) =
1.232, p = .284], DEVICE [F(1,15) = 0.024, p = .087], PRE-
DICTION [F(2,90) = 1.301, p = .133], nor an interaction of
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Figure 7. Average throughput in the Fitts’ task for finger and stylus.
Error bars show 95% confidence interval.

DEVICE× IMU [F(1,15) = .144, p = .389] on the average
error rate per participant.

We summarize that the objective measures showed an increa-
sed throughput and a reduced TCT while using an IMU. There
was no interaction effect, which means that finger as well as
stylus benefit from the factor IMU. The independent variables
showed no effects on the error rate.

Subjective Ratings
We analyzed the 7-point (1= low, 7= high) ratings for the per-
ceived jitter, lag, and unpleasantness of the Fitts’ and paint task.
All results are depicted in Figure 8. The three ratings were gi-
ven on a 7-point Likert scale and, thus, non-parametrical data.
To evaluate non-parametrical data in a multi-factorial analysis
we used aligned rank transformations (ART) introduced by
Wobbrock et al. [40]6.

For the perceived jitter ratings of the Fitts’ task we found a sig-
nificant effect of DEVICE [F(1,15) = 20.390, p< .001], IMU
[F(1,15) = 51.759, p < .001], and PREDICTION [F(2,90) =
245.966, p < .001] as well as an interaction effect of DE-
VICE× IMU [F(1,15) = 4.956, p = .041]. For the perceived
lag, we found no significant effect of DEVICE [F(1,15) =
0.067, p = .798], however, of IMU [F(1,15) = 11.118, p =
.004] and PREDICTION [F(2,90) = 31.435, p < .001]. There
was no interaction effect of DEVICE× IMU [F(1,15) =
0.156, p = .699]. For the perceived unpleasantness, we found
no significant effect of DEVICE [F(1,15) = 3.444, p = .0831]
or IMU [F(1,15) = .605, p = .448] , however, of PRE-
DICTION [F(2,90) = 33.193, p < .001]. No interaction inte-
raction effect of DEVICE× IMU [F(1,15) = 2.832, p = .113]
was found for the perceived unpleasantness in the Fitts’ task.

Analyzing the subjective ratings for the paint task we
found a significant effect of PREDICTION [F(2,90) =
96.721, p < .001], DEVICE [F(1,15) = 44.658, p < .001],
IMU [F(1,15) = 9.382, p = .007], however, no interaction
effect of DEVICE× IMU [F(2,90) = .976, p = .339] on per-
ceived jitter. For the perceived lag during the paint task we
found no significant effect of DEVICE [F(1,15) = 0.267, p =
.612], however, of IMU [F(1,15) = 11.118, p = .004], and
PREDICTION [F(2,90) = 31.435, p < .001], without an inte-
raction of DEVICE× IMU [F(1,15) = 0.074, p = .789].

6https://depts.washington.edu/aimgroup/proj/art/
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Figure 8. Mean subjective ratings for the Fitts’ and paint task using the finger or the stylus (1 = low, 7 = high). Error bars show 95% confidence interval.

Qualitative Feedback
Finally, we analyzed the transcribed comments provided by
the participants after completing both tasks. Two researchers
went through all comments and annotated the key concepts
to identify how participants perceived latencies. The majority
of our participants (N = 12) already noticed lag of mobile
devices’ touchscreens. Only one participant mentioned having
never paid attention to that. They also pointed out, that lower
latencies lead to less frustration (4), higher speed (8), a bet-
ter accuracy/precision (5), more concentration (2) and more
continuity while working (1).

Participants mentioned that they previously noticed latency
on their mobile device while scrolling (7), gaming (4), wri-
ting/swiping (4), and painting (1). When participants noticed
latencies, they all felt disturbed (12). Participants mentioned
that the following applications on touchscreens may profit by
using lower latencies: drawing (8), gaming (7), writing (5),
scrolling (4), typing/swiping (4), panning and zooming (2),
as well as while dragging elements or icons (1). We summa-
rize that latency negatively affects performance and speed, the
users’ workflow, the mental workload, and satisfaction. Thus,
reactive applications and application where precise inputs are
desired would profit by reducing latency.

Discussion
We analyzed the effects of prediction to reduce software la-
tency on touchscreens with an additional IMU at the wrist or
integrated into a stylus. We collected objective and subjective
measures in a Fitts’ dragging task as well as in a painting task
to investigate the users’ performance and experience.

We used the data received from external IMUs to reduce tou-
chscreens’ latency. We showed that the prediction significantly
increases the user’s throughput in a Fitts’ task for the 33 ms
and 66 ms prediction with up to 15% for finger input and 17%
for stylus input. Using an IMU significantly increases the
user’s throughput compared to using the touch trajectory only
without having negative effects on the error rate. This was
the case for both devices (finger and stylus) which means that

using IMUs sensors as additional input for the neural networks
are practical and useful. Although we encouraged our par-
ticipants to speed up if the error rate was below 5% similar
to Henze et al. [11], they reported higher throughputs for the
Fitts’ tasks. The average throughput reported e.g. by Jota et
al. [16] are in line with our results.

The subjective results show that the IMU and the prediction,
as well as the usage of an IMU, can significantly reduce the
perceived lag. Differences of the perceived lag are larger while
using the stylus than compared to using the finger, which
indicates that especially the stylus benefits from the additional
IMU. This is supported by a larger difference of throughput
in the Fitts’ tasks, where the IMU lead to a higher increase of
the first prediction level (33ms) in the stylus than in the finger
condition. Jitter, however, was perceived less pleasant. The
subjective ratings show, that the perceived jitter depends on
the task. The ratings for the perceived jitter in the painting task
were significantly lower than in the Fitts’ task, which leads to
lower unpleasantness ratings for the painting task.

Qualitative feedback at the end of our user study gives use-
ful insights into the perception of latencies and to understand
which applications are affected and potentially profit by redu-
cing them. Our analysis shows that participants felt frustrated
with a lacking coherence between the actual finger or pen po-
sition and the touchscreen display. Applications would benefit
from reducing latencies when they are either highly reactive
(e.g. gaming, painting), when the input should be very precise
(e.g. selecting, typing) or both (e.g. writing, drawing).

APPLICATION AREAS AND IMPLICATIONS
We proposed PredicTouch, a combination of a software-based
approach and IMUs for predicting touch trajectories to reduce
latency. We developed models to predict the touch trajectory
based on the previous touch trajectory and micro-movements
measured by IMUs. Our evaluation shows that a prediction
of 66ms leads to a higher throughput without significant ef-
fects on the error rate. However, the model validation results
(see Figure 4) and the participants’ subjective ratings show
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that the prediction of 33ms leads to a lower unpleasantness
rating without significant effects on the error rate. This can
be explained by the fact that latency reduces the users’ perfor-
mance [16] and has a stronger effect on performance than the
low amounts of jitter [33]. We showed that users perceive less
lag while yielding a significantly higher average throughput
on the cost of an increase in jitter. Users perceived more jitter
during the Fitts’ Task as the size of the dragged object is larger
than the size of a finger. This suggests that applications with
small, concealable or no cursors are especially suited for our
approach as they are less affected by jitter.

Mobile games offer many possibilities to compensate jitter
since steadily visible cursors are rarely used. Fruit Ninja7 is
a fast-paced mobile game that visualizes the users’ input (i.e.
slash to cut the fruit) through animated trajectories. As this
makes it difficult for users to see the jitter, such games benefit
from the latency reduction with minimal side effects. Our
approach can also be used to reduce latency while performing
gestures. With gesture sets in reasonable sizes, gesture recogni-
zers such as the $P, $1 or $N should still be able to distinguish
between given gestures based on a nearest-neighbor classifi-
cation [37]. Similarly, gesture keyboards such as ShapeWri-
ter [41] or Google’s GBoard can benefit from the prediction to
reduce latency. Moreover, applications can predict which UI
components will be touched next to preload functions similar
to web browsers to increase responsiveness. Moreover, UI
components could e.g. be enlarged when the user is about to
touch them. This could avoid touching at a wrong position
due to errors or the fat-finger problem [35].

LIMITATIONS
Both studies were conducted with students from a technical
university in central Europe who belong to a similar group
in terms of experiences. Thus, results may be different when
conducted in countries with either less or more touchscreen
and stylus usage. Further, we used a set of specific tasks (i.e.
Fitts’ dragging task, painting, and writing) that may differ
from real world use cases. Participants were all seated during
the study while performing the tasks which may lead to less
IMU noise than while walking or being in a moving vehicle.

CONCLUSION AND FUTURE WORK
In this work, we presented PredicTouch, a system to reduce
latency on touchscreens by extrapolating the finger’s or stylus’
position from the previous movement. We built on previous
work by Henze et al. [11] who showed that software-reduced
touchscreen latency can significantly increase users’ perfor-
mance. They trained an artificial neural network using touch
trajectories collected from a painting app to predict the finger
position in the near future. We extended this approach and
involved inertial measurement units (IMUs) to provide the
neural network with the hand’s and stylus’ micro-movements
in addition to the touch trajectories. This significantly decre-
ases the prediction error, and increases users’ throughput by
15% and 17% for finger and stylus input respectively when
predicting 66ms into the future. With smartwatches, digital
pens, and wearable technologies becoming more ubiquitous,
7https://fruitninja.com/

our system could be readily deployed into commodity devices
to reduce latency at the cost of a low amount of spatial jitter.

In line with previous work, we used standard multi-layer
feedforward neural networks to show the positive effect of
IMUs. More specialized models, recently proposed to improve
software-reduced touchscreen latency [12], such as RNNs,
LSTMs, or hidden Markov models as well as techniques used
in machine learning competitions such as ensembles, bagging
or boosting might improve the prediction performance. We
expect that the prediction can also be improved by feeding
the machine learning models with rich capacitive data from
around the device [24]. These approaches can be employed in
future work to improve touch prediction in general. As data
can be collected while the mobile device is used, the model
could continuously be improved similarly to mobile keyboards
improving their word predictions. With such a self-improving
system, we envision a framework that enables people to use
IMUs integrated into different devices or smart clothes to
reduce touchscreen latency without carrying additional har-
dware.
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