
Improving Software-Reduced
Touchscreen Latency

Niels Henze
University of Stuttgart
Stuttgart, Germany
niels.henze@vis.uni-stuttgart.de

Huy Viet Le
University of Stuttgart
Stuttgart, Germany
huy.le@vis.uni-stuttgart.de

Sven Mayer
University of Stuttgart
Stuttgart, Germany
sven.mayer@vis.uni-stuttgart.de

Valentin Schwind
University of Stuttgart
Stuttgart, Germany
valentin.schwind@vis.uni-
stuttgart.de

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
MobileHCI ’17, September 4–7, 2017, Vienna, Austria
ACM 978-1-4503-5075-4/17/09.
https://doi.org/10.1145/3098279.3122150

Abstract
The latency of current mobile devices’ touchscreens is
around 100ms and has widely been explored. Latency
down to 2ms is noticeable, and latency as low as 25ms re-
duces users’ performance. Previous work reduced touch
latency by extrapolating a finger’s movement using an en-
semble of shallow neural networks and showed that pre-
dicting 33ms into the future increases users’ performance.
Unfortunately, this prediction has a high error. Predicting
beyond 33ms did not increase participants’ performance,
and the error affected the subjective assessment. We use
more recent machine learning techniques to reduce the
prediction error. We train LSTM networks and multilayer
perceptrons using a large data set and regularization. We
show that linear extrapolation causes an 116.7% higher er-
ror and the previously proposed ensembles of shallow net-
works cause a 26.7% higher error compared to the LSTM
networks. The trained models, the data used for testing,
and the source code is available on GitHub.
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Introduction
All input and output devices have latency. The latency of
touchscreens is especially apparent as input and output
are combined in a single location (see Figure 2). While a
user drags an object or draws a line across a touchscreen,
the object or line follows the finger. The higher the touch-
screens’ latency and the faster the finger, the larger the gap
between the finger and the object or line that follows. Previ-
ous work developed to use tools to measure the latency of
touchscreens [2, 5] and showed that current mobile devices
have a latency of a latency of 50-150ms [12, 16].

The effect of touch latency has widely been explored by
previous work. Ng et al. developed a low-latency system
to investigate how much latency is noticeable and how it
affects users’ performance. The researchers combined a
high-speed projector, a high-speed camera, and an FPGA
to build a touchscreen with around 1ms latency [16]. The
apparatus has been used for a number of studies [1, 11,
15, 16]. It has been shown that latency down to 2ms is still
noticeable for pen [15] and finger input [11]. Furthermore,
Jota et al. also showed that latency down to 25ms reduces
users’ performance when dragging an object across the
screen [11]. Recently, Cattan et al. showed that training
could help to partially reduce the negative effect of touch
latency for a tracking task. The authors conclude, however,
that latency should still be considered as a major hindrance
since learning to compensate for latency requires a sizable
effort, it may not occur or transfer to every type of tasks,
and it may have a high cognitive cost [4].

Cattan et al. also built a low latency touchscreen using an
optical marker-based tracking system to investigate the ef-
fect of linearly extrapolating the position of a user’s finger
on a tabletop to reduce latency [3]. The authors showed
that linear extrapolation did not improve participants’ per-

Figure 1: The effect of 100ms (white), 67ms (yellow), and 33ms
(green) latency when a user drags an object across the screen.

formance for devices with more than 42ms latency. The au-
thors concluded that the linear extrapolation is strongly con-
strained, but that the approach can be successfully applied
to counteract a large part of the negative effect of latency
on users’ performance.

A characteristic of all extrapolation methods is that the ex-
trapolation has a certain error. When using extrapolation
to reduce touchscreen latency, this error can become ap-
parent as jitter. In previous work, researchers investigated
the effect of extrapolation on dragging performance and
subjective assessment [7]. In contrast to previous work,
Henze et al. used an off-the-shelf tablet with 100ms latency.
They collected a data set to train an ensemble of shallow
neural networks which extrapolate the movement of a fin-
ger on a touchscreen. Comparing the trained ensemble
with other approaches including linear extrapolation, they
showed that the ensemble has a lower error compared to
all other tested approaches. As the error increases the fur-



ther the network looks into the future, Henze et al. could
only show that extrapolating the next 33ms increases par-
ticipants performance. Extrapolating further into the future
did not further increase participants performance. In addi-
tion, the extrapolation error negatively affected participants’
subjective rating [7].

In this late-breaking work, we show how we further re-
duce the error when extrapolation a fingers movement on
a touchscreen using more recent machine learning tech-
niques. In the following, we first describe the used data
set, the architecture of the neural networks, and the train-
ing procedure. Afterward, we provide an assessment of
the networks’ performance by comparing them to previous
work. We close the paper with a discussion of promising
improvements that could further reduce the error as well as
interesting potential studies.

Neural Network Architecture & Training
In the last couple of years, we witness the third wave of ma-
chine learning. Recent machine learning research demon-
strated impressive performance for a very wide range of
tasks. This success in machine learning was mainly en-
abled by combining new training algorithms, new network
architectures and moving the training on graphic cards.
Combined, these three aspects enable to train models
that outperform previous approaches for almost all areas.
In previous work, Henze et al. used an ensemble of neu-
ral networks that consists of a single hidden layer with 96
neurons [7]. While these networks outperformed polyno-
mial interpolation and using an ensemble further decreased
the error, the approach used techniques that have been
the state-of-the-art over 20 years ago. Thus, we aimed to
explore if more recent machine learning approaches can
reduce the error.

Input and Output Vectors
Our overall approach resembles the approach used in pre-
vious work [7]. We take a stream of x/y touch positions from
the touchscreen. Each touch event comes together with a
timestamp. At each point in time, we can use the previous
positions to predict the subsequent positions. For training,
we take n (e.g. n=17) touch events as the input and output
of the network. We take the first 11 touch events as the in-
put for the network. As output for the network, we use the
remaining pre-processed touch events by individually sum-
ming up their x- and y-component.

We first scale the touch events to a pixel density of 323 ppi
(the pixel density of a Nexus 7) to make the events resolu-
tion invariant. We make a sequence of touch events rotation
invariant by computing the angle of the vector between the
last two touch events that go into the network and rotate
the whole segment to align the vector with the line were
x=y (45◦). Afterward, we make the touch events position in-
variant by computing the first derivation of the x/y position,
thereby deriving the speed of the finger along both axes
from two sequential touch positions. In contrast to Henze et
al. [7] we do not further normalize the input as we assumed
that this is not needed if the training set is sufficiently large
and diverse. The x- and the y-component of the prepro-
cessed touch events are part of the input vector that goes
into the network.

Architecture
We used python 3.6 and TensorFlow 1.11 to build the model
and to train the network. TensorFlow provides the unique
possibility to reduce the size of a trained model and to com-
pile the model for deployment on Android and iOS devices
by supporting quantization and lower precision arithmetic

1TensorFlow - An open-source software library for Machine Intelli-
gence tensorflow.org

http://tensorflow.org


that reduce model size. We explored different hyperparam-
eters for the network, including different numbers of network
layers, the number of neurons in the layers, activation func-
tions, and cost functions. We finally decided for a multilayer
perceptron and an LSTM network, two fairly standard ar-
chitectures, as they already showed a clear improvement
regarding error compared to previous work.

We use a multilayer perceptron with four hidden layers.
While the multilayer perceptron has already been described
in the 1960s, using more than two layers only recently be-
came possible through increased computing power, im-
proved optimization algorithms, and new activation func-
tions. In addition to the x/y positions, we add the rotation
angle, the time between the touch events that go into the
network, the time the algorithm should look into the future,
as well as the screen size of the used device in inch. Our
network has 33 input neurons (speed in x- and y-direction,
the time between the touch events, the rotation angle, the
screen size of the device in inches, and the amount of time
the network should look into the future) computed from a
sequence of 11 touch events. The hidden layers consist of
4096, 2048, 1024, 512 neurons. As neurons, we use rec-
tified linear units, the most popular activation function for
deep neural networks [14].

We use a recurrent network consisting of long short-term
memory (LSTM) cells proposed by Hochreiter and Schmid-
huber in 1997 [10]. The input vector consists of three val-
ues that are sequentially fed to the network. We feed the
network with one x/y position after the other. We add the
time between two following touch events to the input vector
depending on the time the network should look into the fu-
ture. When the network should look two touch events into
the future, for example, we add the time between the touch
events two events into the future of the x/y position. We

simply use the default LSTM layers provided by TFLearn2.
The network consists of two stacked LSTM layers with 512
and 256 cells.

Training procedure
We use the Xavier initializer described by Glorot and Ben-
gio [6] to initialize the weights. The biases are initialized
with random values from a normal distribution. For the mul-
tilayer perceptron, we use the sum of the Euclidean norm
and the square of the Euclidean norm. We use L2 regular-
ization with a factor of 0.5 and a 0.5 dropout to improve the
networks ability to generalize beyond the training data. For
the LSTM network, we use a mean squared loss function
and 0.75 for dropout.

For both types of networks, we use the Adam optimizer [13]
as it has been suggested that Adam might be the best over-
all choice compared to other optimizers [17]. Batches of
500 samples are used for backpropagation to reduce train-
ing time and to increase the networks’ robustness. We
randomize the samples between the epochs. We use a
0.00005 learning rate for the multilayer perceptron and a
0.0001 learning rate for the LSTM network.

TTo train the networks, we use data collected with an in the
large approach by Henze et al. [8, 9]. Thus we use data
from the same Android drawing application3 from various
smartphones and tablets. We started with data from 25,719
Android devices collected between August 8th, 2015 and
December 23, 2016. We manually determined the screen
size for all device types with more than 40 devices in the
entire data set. We randomly selected a subset of 10,000
devices to reduce processing time. This resulted in 3,739

2TFLearn: Deep learning library featuring a higher-level API for Ten-
sorFlow tflearn.org

3The drawing application Pen & Paper in Google Play: play.google.
com/store/apps/details?id=net.nhenze.penandpaper

http://tflearn.org
http://play.google.com/store/apps/details?id=net.nhenze.penandpaper
http://play.google.com/store/apps/details?id=net.nhenze.penandpaper


Writing Drawing Fitts’ Law

Approach 33.33ms 66.67ms 100ms 33.33ms 66.67ms 100ms 33.33ms 66.67ms 100ms
no extrapolation 15.4px 29.7px 42.5px 40.2px 77.9px 110.1px 31.7px 52.6px 66.3px
Linear extrapolation 7.8px 21.1px 38.5px 25.1px 67.9px 123.3px 16.9px 39.6px 69.0px
Neural networks [7] 6.0px 14.5px 24.8px 16.1px 36.5px 60.2px 11.4px 26.1px 43.4px
Multilayer perceptron 5.6px 13.0px 23.1px 14.3px 32.8px 55.4px 8.7px 16.8px 27.8px
LSTM network 5.1px 13.0px 23.0px 13.2px 31.9px 54.3px 7.4px 15.6px 25.4px

Table 1: Prediction error for the different approaches. Apart from the results for the multilayer perceptron and the LSTM network, the table is
equivalent to the results presented in Henze et al. [7]. 10px are equivalent to 0.79mm and 10mm are equivalent to 127.20px.

devices with 116 different device types. Users produced a
total of 1,123,632 strokes on theses devices consisting of
28,647,419 touch events. From this data set, we retrieved
sequences of touch events to derive training samples. We
excluded all samples that contain touch events with more
than 99ms between them.

Preprocessing and filtering resulted in a final dataset with
2,074,655 samples for extrapolation the finger’s position
in 33ms, which is one magnitude more than what previ-
ous work used. We further divided the samples into 90%
for training and 10% for testing. For both types, we trained
three networks, each extrapolating the finger’s position in
two, four or six touch events from now. This is equivalent to
the position in 33ms, 67ms, and 100ms assuming a con-
stant rate 60Hz for new touch events. We trained the net-
works for around 500 epochs. Training of each network took
on average eight hours using two ZOTAC GeForce GTX
1080 AMP! Edition.

Network Performance
To assess the performance of the trained networks and
compare it to previous work we used the same validation
set used in previous work (see Henze et al. [7] for a de-

tailed description). The validation set consist of data pro-
duced on a Nexus 7 tablet with a 7.02inch (178mm) dis-
play and a resolution of 1920 × 1200 pixels. The device
provides touch events and updates the screen with a con-
stant rate of 60Hz. It has a latency of 100ms. Eight partic-
ipants contributed data with three tasks: a Fitts’ Law task
that replicated the design by Jota et al. [11], a writing task
where each participant wrote 10 phrases, and a drawing
task where each participant draw a scene from their holiday.

As shown in Table 1, both networks outperform the linear
extrapolation proposed by Cattan et al. [3] as well as the
ensemble of neural networks [7]. For the multilayer percep-
tron, the average error in millimeters is 0.75mm for 33ms,
1.64mm for 66.67ms, and 2.80mm for 100ms. Compared
to the ensemble of neural networks, the multilayer percep-
tron reduces the average error for the three tasks (Writing,
Drawing, and Fitts’ Law) from 11.2px to 9.5px for 33ms pre-
diction, from 25.7px to 20.8px for 6ms prediction, and from
42.8px to 35.4px for 100ms prediction. Linear extrapolation
causes a 107.8% higher error and the ensemble of neu-
ral networks causes a 21.5% higher error compared to the
trained multilayer perceptron.



For the LSTM network, the average error in millimeters is
0.68mm for 33ms, 1.60mm for 66.67ms, and 2.70mm for
100ms. Compared to the ensemble of neural networks,
the multilayer perceptron reduces the average error for the
three tasks (Writing, Drawing, and Fitts’ Law) from 11.2px
to 8.6px for 33ms prediction, from 25.7px to 20.2px for
67ms prediction, and from 42.8px to 34.2px for 100ms pre-
diction. Linear extrapolation causes an 116.7% higher er-
ror and the ensemble of neural networks causes a 26.7%
higher error compared to the trained multilayer perceptron.

Figure 2 shows the error of both networks for the three
tasks. Apparently, the error seems to increase super-linear,
similar to the other prediction approaches. Comparing the
two networks, the LSTM network outperforms or is on par
with the multilayer perceptron for all tasks. Overall, the mul-
tilayer perceptron has a 4.3% higher error rate compared to
the LSTM.

Figure 2: The development of the error for the three tasks with
increasing extrapolation time.

Conclusion & Future Work
In this late-breaking work, we showed how to reduce the
error when extrapolation a fingers movement on a touch-
screen using state of the art machine learning techniques.
We trained a networks that outperform previous machine
learning-based approaches by 26.7%. Besides the reduced
error, the models were trained on over 100 different device
types. We assume that the model could therefore also be
usable on other devices. The models, the data used for
testing, as well as the source code, is available on GitHub4.

We could envision a number of further improvements. Pre-
vious work ensured that the prediction ends on the screen,
which we do not do in our assessment. This would easily
reduce the error by a few percent. As previous work used
an ensemble of shallow neural networks, we could use an
ensemble of LSTM networks or multilayer perceptrons. A
systematic hyperparameter search that additionally con-
siders, for example, L1 regularization, other optimizers, or
different architectures might also further reduce the error.

Apart from further improving the extrapolation, we are also
interested in assessing the performance of the models
in further studies. We intend to determine the effect on
throughput by conducting a controlled study using a drag-
ging task. On the other hand, we would like to study the
performance with actual users by integrating the model into
the drawing application we used for data collection. We as-
sume that extrapolation not only has a positive effect on
abstract tasks but also improves the drawing experience.

Acknowledgements: Supported by the DFG within the
SimTech Cluster of Excellence (EXC 310/2) and the SFB/TRR
161. Also supported by the MWK Baden-Württemberg
within the Juniorprofessuren-Programm.

4github.com/interactionlab/MobileHCI17-Touch-Extrapolation
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